Im:YAP&Im:YAG

Jan Šulc Helena Jelínková **Czech Technical University**

Dep. of Physical Electronics PRAGUE - CZECH REPUBLIC Pavel Černý

Institute of Photonics University of Strathclyde GREAT BRITAIN

Karel Nejezchleb Václav Skoda

CRYTUR, Ltd. TURNOV Palackého 175, Turnov **CZECH REPUBLIC**

Introduction

Tm doped crystals embrace several attractive features that nominate them as the material of choice for solid-state laser sources with emission wavelength tunable around 2 μ m. It was demonstrated that Tm:YAG laser can be tuned from 1.91 up to 2.15 μ m. Similarly, Tm:YAP laser has tuning range from 1.85 to 2.03 μ m. The quasi-three level system of Tm:doped crystals requires appropriate pumping geometry and good heat extraction from the active media. On the other hand, Tm doped

materials benefit from a long fluorescence lifetime, which is attractive for high-energy Q-switched operation. Also, the efficient cross-relaxation with neighbouring Tm³⁺ ions produces two excitation photons in upper laser level for one absorbed pump photon. This makes the laser very efficient with quantum efficiency approaching two and reduces thermal loading.

Tm:YAG and Tm:YAP found their application in medical lasers, radars and atmospheric sensing.

Tm:YAP

Properties of Tm:YAP depends on crystal orientation. Crystals cut along the "a" or "b" axis (Pbnm space group) are mostly used.

Absorption peak Absorption cross section Emission wavelength Emission cross section Excited state lifetime

B-cut A-cut 794.8 nm 793.5 nm 7 x 10⁻²¹ cm²

1980 nm 1940 nm $5 \times 10^{-20} \text{ cm}^2$

4.4 ms (6 % Tm)

Tm:YAG

Tm:YAG fluorescent lifetime is about two times longer than of thulium in YAP. The emission crosssection in Tm:YAG is lower than in Tm:YAP. Tm:YAG is optically isotropic material.

Absorption peak **Absorption cross section Emission wavelength Emission cross section Excited state lifetime**

10

785 nm $7.5 \times 10^{-21} \text{ cm}^2$ 2013 nm $2.2 \times 10^{-20} \text{ cm}^2$ 9.2 ms (6 % Tm)

Experimental results

Tm:YAP laser, 3 mm, 4 %

Threshold power = 2.8 W

Slope efficiency = 58 %

Maximal output = 4.1 W

Wavelength = 1980 nm

Pumping wavelength = 793 nm

 $L_{rez} = 30 \text{ mm}, R_{OC} = 92 \%, r = 300 \text{ mm}$

Pumping laser radiation

Fibre coupled diode HLU30F400-790 (LIMO) Emission: 793 nm (Tm:YAP), 785 nm (Tm:YAG)

Fibre: D = 400 μ m, NA = 0.22

Focussing optics 1:1

Two achomatic doublets, f = 75 mm, spot 380 μ m Laser crystal - AR/AR for pump & laser

Length = 3 mm, Diameter = 3 mm

Tm:YAP: c = 4 at.% Tm, Tm:YAG: c = 6 at.% Tm

Laser resonator

Length = 30 or 40 mm

RM: R = 100 % @ 1.8 - 2.1 μ m, T_{MAX} @ 0.8 μ m, flat OC: R = 92 or 97.5 % @ 1.8 - 2.1 μ m, r = 300 mm

Dutput Power [W] Absorbed pumping power [W]

Acknowledgment